We present a method for **temporally-extended planning** over high-dimensional state spaces by learning a state representation amenable to optimization and a goal-conditioned policy to abstract time.

Introduction
- Planning can solve temporally extended tasks
- Goals provide action and temporal abstraction [2]
- Generally, states may live in unknown lower-dimensional manifold, making planning challenging

Idea: Learn dense state abstractions to make optimization feasible.

Temporal difference models (TDMs) are value functions that satisfy

\[V(s_t, g, t) = \mathbb{E}[r(s_t, a_t, s_{t+1}, s_g)1\{t = 0\} + \max Q(s_{t+1}, a, s_g, t - 1)1\{t \neq 0\}] \]

\[r(s_t, a_t, s_{t+1}, g) = -\text{Distance}(s_{t+1}, g) \]

where \(t \) = planning horizon and \(s_g \) = goal state.

[Image 0x64 to 84x173]

Latent Embedding for Abstracted Planning (LEAP)

Given the current state \(s \) and goal \(g \)

choose realistic latent vectors \(z_1, \ldots, z_k \)

that minimize the norm of the feasibility vector

\[\overline{V}(s, g; t_{1:k}, g) = \begin{bmatrix} V(s, g_1, t_1) \\ V(g_1, g_2, t_1) \\ \vdots \\ V(g_{t-1}, g_t) \end{bmatrix} \]

where \(g_k = \psi(z_k) \). Formally, minimize

\[z_{1:k}^* = \arg \min_{z} \sum_{k=1}^{K} \| \overline{V}(s, z_{1:k}, t_{1:k}, g) \|_p - \lambda \sum_{k=1}^{K} \log p(z_k) \]

and go towards first goal \(g_1 = \psi(z_1^*) \).

Implementation details
- Use cross-entropy method for optimization.
- Reuse encoder \(\psi \) for RL networks.
- Use \(\ell_{\infty} \) norm.
- Uniformly space \(t_1, t_2, \ldots, t_K = \lfloor T_{\text{max}} / K \rfloor \)

References
